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The Collinear Crack Problem In A Graded

Medium
by
Murat Ozturk and Fazil Erdogan
Department of Mechanical engineering and Mechanics
Lehigh University, Bethlehem, PA 18015

Abstract

The collinear crack problem in an inhomogeneous orthotropic medium is
considered under Mode I plane strain or plane stress loading conditions. It is shown
that by introducing certain averaged orthotropy parameters, aside from a scaling
parameter the results become only weakly dependent on the orthotropy constants. The
main results of the study consist of the stress intensity factors at various crack tips as
influenced by the material inhomogeneity parameter and by the relative size and
position of the secondary cracks with respect to the dominant crack. Also considered
is the crack/contact problem for the graded medium subjected to remote tension and
bending through fixed grips. It is shown that the crack surface contact on the
compression side of the loading has a magnifying effect on the stress intensity factor
on the tension side.

1. Intrdduction

In recent years there has been considerable interest in grading the thermomechanical
properties of composites as a new tool in designing materials for specific applications ( see
Yamanouchi et al. 1990, Holt et al. 1993 and Iischner and Cherradi 1995 for review,
applications and extensive references). Up to now most of the work in the field has been
on metal/ceramic particulate composites. By proper selection of the constituent materials,
compositional grading and the processing technique, the concept may be used to develop
new materials having such highly desirable and seemingly irreconcilable properties as high
heat, corrosion and wear resistance, high strength and high toughness in the same material
system. The technique may also be used to process interfacial regions to improve bonding
(Kurihara et al. 1990) and to reduce the magnitude of residual and thermal stresses in
bonded dissimilar materials (Lee and Erdogan 1995, Lee and Erdogan 1997).

In the past the fracture mechanics studies of graded materials were concerned
primarily with the influence of material inhomogeneity constants, and certain
dimensionless length parameters on the fracture behavior of components containing a
single dominant crack. For example, the model and the mixed mode crack problems for
an infinite isotropic inhomogeneous medium were studied by Delale and Erdogan (1983)
and Konda and Erdogan (1994), respectively. The influence of the length parameters on
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the stress intensity factors and the strain energy release rates in isotropic graded layers
undergoing spallation and surface cracking was investigated by Chen and Erdogan (1994)
and Erdogan and Wu (1996), respectively. However, because of the nature of the
techniques used in processing, the graded materials are seldom isotropic. Of the two most
commonly used processing techniques, generally thermal spray would give a lamellar
(Sampath et al. 1995) and the electron beam physical vapor deposition a columnar
structure (Kaysser and Ilschner 1995). An appropriate model for such graded materials
would be an orthotropic inhomogeneous continuum (Ozturk and Erdogan 1997). One
additional factor that needs to be considered in studying the basic crack problem in graded
materials is the so-called multiple-site cracking or the crack interaction. In homogeneous
materials, as intuitively expected, the crack interaction would invariably increase the
relative magnitude of stress intensity factors. In graded materials, however, such a
categorical statement is, generally not possible and the result may depend on the relative
positions of the multiple cracks with respect to the direction of the material property
variation as well as on the relative dimensions.

The main objective of this article is to study the influence of the relative size and
location of a secondary crack on the stress intensity factors in an orthotropic
inhomogeneous medium containing a dominant crack. It is assumed that the cracks are
collinear and are located in a plane parallel to the direction of material property variation.
It is also assumed that the problem is one of plane strain or generalized plane stress and
the solution of the elasticity problem in the absence of crack is known. Thus, the plane of
the cracks is one of symmetry and the problem is a model crack problem in which the
known crack surface tractions are the only external loads. The problem is formulated for
arbitrary crack surface tractions and the results are given for some simple loading
conditions. The stress intensity factors for more complex loadings may then be obtained by
superposition. Clearly, the result would be valid only if the modeI stress intensity factors
k; at all crack tips are positive. A negative k; implies crack closure in which case the
problem becomes nonlinear with the size of the contact zone being an additional unknown.
This problem is solved by assuming that the graded medium contains a single crack and is
subjected to tension and bending away from the crack region through rigid grips ( see
Appendix A for the solution in a homogeneous isotropic medium which is obtained in
closed form).

2. Formulation of the Elasticity Problem

Let Eyy, Ey, G2 and vy, (3,5 = 1,2, 3) be the engineering elastic parameters for an

orthotropic inhomogeneous plane z;, zs. To replace them we introduce the following four
parameters (Krenk 1979, Cinar and Erdogan 1983):

Eyn e E
E=+EnEy, v=.\/vivsn, 6 == =—, K= -V 1
11£22 VASPIZI =By m 2G (1)
for plane stress and
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E= ( EnEx )1/2 Y= ((VIZ + 113 va2) (Va1 + vas V31)) 12
- Vo= ’

(1 — 13v31)(1 — vosvs2) (1 — v13 v31)(1 — o3 v32)

Eq1 (1 — vpsvs0) K =
Ey»n (1 - vzva)’ 2G12

for plane strain conditions. In graded materials generally F, v, ¥ and §, would be
functions of z;,z,. However, previously it was shown that the results are only weakly
dependent on v (Delale and Erdogan 1983, Ozturk and Erdogan 1997) and it may be
assumed that E;,, Eo; and G5 vary proportionately. Consequently, the parameters x and
6o may be assumed to be constant and the material inhomogeneity may be represented by
the function E(x;,z;) only. Note that § =1 and & =1 correspond to the isotropic
medium and for ¥ < —1 the problem has no feasible solution (Erdogan and Wu 1993). By
introducing & as a scaling parameter, in the usual notation we define

g=z1/\/6, y=+/bo 22,
u(z,y) = ul(z11z2)\/%’ v(z,y) = u2($1,$2)/\/—5—,

02z(2,y) = 011(21, 22)/ b0, Oyy(x,y) = 6o 022(71, Z2),

b =

-V 2)

Oy (T,9) = 012(x1, T2). (3)

Furthermore, by assuming that the stiffness E varies in z; direction only and in the crack
region may be approximated by (Fig. 1)

E(ml,xg) = E(Ib'l) = Fpe*™ = E(.’E) = Fpe™, Y= CY\/;SE, (4)

the equilibrium equations may be expressed as

8%u v du Bv
32+ﬂ13$2 +ﬁ288 +ﬁl’7( +V'a—-y-)_0’

32 82'0 62u du  Ov
where
2(k +
p=2EE0 m1tup, ©

Due to symmetry by considering y > 0 half plane only, from (5) it may be shown that
]. (o o] 4 ik
wen) =g [ ARIB R ak,
1 o3 y—tkz
v(z,y) = %/_OOZ; Bj(k) ek 0<y < oo, @)

3




Oz(Z,y) = E(z) / Z(V)\ — iAjk)Bj eV d,

-2 27

ow(z,y) = E(z) L / Z (\; — ivA;k)B; XV d,

— 2 27
E T -tk
Oy (2, y) = 2(n(+)y)27r/ EAA k)BjeMv k2 dk 0 < y < o0. (8)
where
1,. 1 - 1/2
A= —/\s={§(C +2nn)+§\/(c2+2ﬁn) —4772} ;
1 1 1/2
Ae= =M= {-2-(42+2M7)—-\/ 42+2Hn)2—4n2} : ©)
CG=v?, =k +ik, (10)

and

(iB2k — vB1v)
A= 2E TP
! A —pip

The unknown functions B; and B; are determined from the following boundary
conditions

j=3,4. (11)

o12(21,0) =0, —00 < 1 < 00. (12)
022(x1,+0) = p(z1), zy €L, L= Elek, Ly = (ax,br),

ug (21, +0) = \/6_01)($, +0) =0, €L, L+L = (—0o0, 00). (13)

Here, it is assumed that the crack surface traction p(x;) is a known function and the
medium contains n collinear cracks along z; = 0 (Fig. 1).
By defining the following new unknown function

0 (@1, 40) = g(z1), —o0 <31 < o0, (14)
39:1

it can be shown that the boundary conditions reduce to (Ozturk and Erdogan 1997)

1 1 (31 +S2)60 —axl
7"./1, [tl — o + Ro(ty — z1) | g(t1)dty = Fe p(z1), =z €L, (15)




L[ gm)dm =0, =1, (16)
™ L; :

where

51 =+ Kk+ K, Sy = /K — K1, K1 = VK2 -1, 17)
1
Ry(ty —z1) = le ((t = 21)/ V%)

Ri(s—z) = /0 P [?R(h(k))cos(k(s — 7)) — S(h(k))sin(k(s — :v))] dk, (18)

[ [(s1+ 82)(k + iy)
—1 YW - 1] , K#1
h(ky=<¢< (19
s 2(k + i) _1 =1
! Vvy? + 4(k? + ivk) ’ '

In real materials —1 < kK < coand s; + s is always real. Also, for v =0, A\ = ks,
A2 = ksz, h(k) =0, R; =0 and (15) would reduce to the integral equation for a
homogeneous orthotropic medium.

It is interesting to note that in the special case of isotropic inhomogeneous materials
the integral in (18) can be evaluated in closed form giving (Appendix B)

e
Ratts = m) = 5wl s ole) + Kawoled } - 2,

E=5t-m). (20)

where K and K, are modified Bessel functions. Also note that the kernel R, depends on
the inhomogeneity constant o and the elastic constants v and x but not on E; and &.
Similarly s; and s, depend on the shear parameter x only. It may then be concluded that in
(15) Ep and 6y are simply scaling constants and would have no influence on the stress
intensity factors which may be defined by and, after solving (15), evaluated from

k(i) = o ETI}:MV 2(z1 — bi) 092(x1, +0)
E
= —lim (xl) ————1/2(br — 71) 9(z1),

11"’1":“0(31 + 52 )6

kl (ak) = 2 _1}1:: _0\/ 2(ak - 2)1) 029 (271, +0)
_ . E(:U]) )
= lim % ————1/2(z; — a) g(z1), \ 1. @1
0

zy —ax +0 (81 + 82
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Also, from (13) and (14) the crack surface displacements may be obtained as

x)
‘UQ(.’Bl,‘l"O) = / g(tl)dtl, a; < < bj, j=1...,n. (22)

j

3. On The Solution Of The Integral Equation

Since the closed form solution is not available the integral equation (15) must be
solved numerically. A simple and very effective way to do this would be to reduce (15) to
a system of n integral equations each having the support (—1, 1) by defining

_ 2t1 - (bk + ak)

, ar <t < by, -l1<g¢g<1,

(bk""ak) k 1 k q

r=2x1—(bk+ak), ar < zy < by, -l1<r<l,
(br — ax)

or(q) = g(t1), ar < t; < bg, -1<¢g<1,

fk(?’)=P($1)/P0, ar < x1 < by, -l1<r<l,

Ri(ck(g — zik)) = Re(ty — 1) /e, ai <z <b;, ap <ty <by,

-1<g<1,
— S(be— ), di = = (bk + )
Ck—2 k — Ak}, k—2 kT ag),
z,-k=ﬂr+-l-(d,-—dk), (4,k)=1,--,n, -1l<r<l, (23)
Ck Ck

where P, which has the dimension of stress is a normalization constant. The equations
(15) and (16) may then be expressed as

_1_/1 __1_+c-R.--]¢~( )d
tJalg—71 1+t i\d) aq

~1f 1 (51t 82)b0 Py

N Z‘; 7f/-1 [q — Zik N ckR'k] Prla)de = Epexp(a(c;r + di))fl(r)’
k#i
..__1<T<1’ i=1’-‘.’n, (24)
1

/1¢k(q)dq=0’ k":l,“',n, (25)

The system of integral equations may be solved in a standard manner by expressing

6




(51 +82)00F 1 >
AenTn(@), -1<q<1, k=1,-n, (26

where T,,(q) is the Chebyshev polynomial of the first kind and A, are unknown
dimensionless constants. From (25) and othogonality conditions of Ty,'s it follows that
Ao = 0. The coefficients Ay, are determined by substituting from (26) into (24) and by
using the method of reduction (Kantorovich and Krylov 1958, Erdogan 1978). The stress
intensity factors may then be obtained from (21) and (26) as follows:

¢k (Q) =

ki(bk) = —Por/Ck €% Aim,
m=1

o0

ki(ar) = Po\/ae-“*z:(—l)mAkm, k=1,---,n. (27a,b)

m=1

4, Results and Discussion

The main interest in this study is in evaluating the influence of relative position, size
and distance of a "small" crack lying in the plane of a dominant crack on the stress
intensity factors in an inhomogeneous orthotropic medium. With the additional knowledge
of subcritical crack growth characteristics of the material, one may then be able to
determine, for example, fatigue or corrosion crack growth rate at each crack tip. The
problem is solved under two sets of loading conditions. In the first, it is assumed that the
crack surface tractions are given by (see 13)

T I 2 T 3
p(z1) = —po pl(a) Pz(a) P3(a), z € L, (28)
where py, p1, P2 and ps are the measure of the magnitude of external loads and are known
constants and g is a normalizing length parameter (usually the half length of the dominant
crack ). Since the problem is linear, these results may be helpful to find an approximate
solution to the crack problem for a given specific loading. The second external load
considered is a remote displacement loading of the form

€22(1, T2) = € + €1(1/a) (29)
giving
— EO (22051 ﬂ
p(z1) = —ge (eo-{—el(a)), T € L. (30)

Summary of the results for an isotropic inhomogeneous medium containing a single
crack along z; = 0, —a < ;1 < a is shown in Tables 1-3. These results are both accurate
and comprehensive. Tables 4-6 show the comparison of the stress intensity factors
obtained in this study with that found by Delale and Erdogan (1983). From the solution
given in the previous section the crack surface displacement may easily be expressed as
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Uz (1, 4+0) _ 1— (?_1_)2i.{12[]n_1 (ﬂ), @31

Vo
where uy(z;,+0) = v(z,0),
| vo = 2aPy(1 — 1*)/Ey | (32)
for isotropic and
vo=(s1 + 32)60P0a/f70 33)

for orthotropic inhomogeneous materials (Eo = FE, for plane stress and
Ey = Ey/(1 —1?) for plane strain ). Some sample results for the crack surface
displacement are shown in Figure 2.

The calculated plane strain results for the normalized stress intensity factors at various
crack tips in an isotropic inhomogeneous medium containing two unequal cracksunder
fixed grip (22 = o) or fixed load (o,(x1,0) = —p) conditions are given in Figures 3-
16. Some of the limiting cases of these results for (c; + ¢2)/d — 0 (the uncoupled case)
and (c; +¢2)/d — 1 ( the case of a single crack of length 2(c; + ¢;)) may be found in
Table 7. One may note that as (¢; + ¢3)/d — 1 or a; — by, ki(b1) — 00, k1(az) — oo
and k;(a;) and k;(be) approach the single crack values. As shown by Boduroglu and
Erdogan (1983) and as may be observed in Figure 7, for a; — by ki(a;) and k; (b;) are
highly ill-defined ( that is, their slopes are unbounded as (¢; + ¢2)/d — 1).

Some sample results for stress intensity factors in an orthotropic inhomogeneous
medium containing two unequal collinear cracks under plane strain conditions are given in
Figures 17-21 and Tables 8 and 9. Aside from the geometric parameters c;/c; and
(c1 + ¢2)/d, as pointed out previously, the main variables in this case are the material
inhomogeneity constant o and the shear parameter . Both the figures and the tables show
that the dependence of the stress intensity factors on « is strong and on k is rather weak.

The results for the crack/contact problem under remote loading e = €9 + €1 (z/a)
are shown in Tables 10, 11 and Figures 22-25. Figure 22 shows the crack surface
displacement for ¢ /e; = 8 = 0 (remote bending) obtained by ignoring the crack surface
interpenetration. Thus, on the compressive side of the external load the solution gives
negative displacement which is physically unacceptable. Figures 23 and 24 show the crack
surface displacement for 8 = 0 obtained by taking into account the smooth contact of the
surfaces. Note the slight dependence of the crack surface displacement on the sign of ;.
Table 10 shows the stress intensity factors and the size of the contact zone again for
remote loading €2 = €;(x;/a) and for various values of the material inhomogeneity
constant a, (E(z;) = Epexp(ax;), see (4)). The contact occurs along z; =0,
—a <z <—b,(—a< —=b) for g >0 and along 2 =0,b< z; <a, (b<a) for
€1 < 0. The table also shows the (theoretical) stress intensity factors calculated by
disregarding the crack surface penetration (no contact case). Note that the presence of
contact tends to magnify the stress intensity factor at the crack tip on the tension side (




ki (a) for 1 > 0 and k; (—a) for €; < 0). Note also the highly significant influence of the
material inhomogeneity constant on the stress intensity factors.

Some sample results for the combined loading “tension" and "bending",
€29 = €9 + €1(z1/a), (€0/€1 = B) are shown in Figure 25 and Table 11. Figure 25 shows
the crack surface displacement for various values of 8. For 8 > £, and the contact zone
size becomes zero, that is b = a, § = 3, corresponding to k; (—a) = 0. Also, b < a for
B < B..Table 11 shows the crack contact zone sizes and the corresponding stress
intensity factors. If the material is homogeneous and isotropic the crack/contact problem
can be solved in closed form which is given in Appendix A.

Finally, a sample result giving the distribution of o,,(x,0) along the net ligament
b; < z < ag is shown in Fig. 26. Note that the solution given in this study is that of the
perturbation problem which must be added to the results obtained from the uncracked
medium in order to find the total solution.

5. Conclusions

In the case of two collinear cracks with crack tips at (a;,b;) and (ag,b2) and
a; < by < ap < by, by —a; > by — ay (that is, (a1, by ) being the dominant crack ), if the
medium is homogeneous (isotropic or orthotropic) then under mode I loading generally
k1(b1) > ki(a1) > ki(ag) > ki(b2), meaning that fastest crack growth would take place
at the inner tip of the dominant crack. As the ligament a, — b; decreases and tends to zero
ki(az) as well as k; (b;) becomes unbounded. However, if the medium is inhomogeneous,
the values of the stress intensity factors may be influenced quite significantly by the
relative positions of the dominant and the secondary cracks with respect to the direction of
material property variation.

After introducing the "averaged" orthotropy parameters E, v, k, and g, in mode I
crack problems for an inhomogeneous orthotropic medium E(0) and & act as scaling
constants and v and x do not seem to have a significant influence on the stress intensity
factors. In crack problems involving graded materials the dominant factor remains to be
the material inhomogeneity constant.

In mode I and mode III crack problems for isotropic graded materials described by
p(z) = poexp(az) the kernels of the integral equations can be evaluated in closed form.
Consequently, for these materials highly accurate benchmark solutions can be obtained. In
this article the mode I stress intensity factors in such materials are provided for tension and
bending through fixed grips as well as third degree polynomial tractions acting on the
crack surfaces.
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APPENDIX A

Crack Closure for a Homogeneous Isotropic Medium

Let the medium contain a single crack of length 2a along the z axis and be subjected
to crack surface tractions o0.y(z,0) =0, 0yy(x,0) = p(x), —a < T < a. By defining
dv(z, +0)/dzx = g(z), the integral equation of the problem may be expressed as

g(s)ds 2 B
7r/_as . Ep( x), a<z<a, Al
subject to
l/a (s)ds=0 A2
T _ag — M

where Ey = E for plane stress and Ey = E/(1 —v?) for plane strain conditions. By
substituting

z=ar', s=as, g(s)=G('), plz)=P). A3
Al and A2 become
LG(s)ds' 2 , b,
E—l o — 1! ""E—OP(:L'), [_lG(S)dS—O. Ad

We now assume that the solution of (A4) is of the form

AT, (s)
G()—Zm A5

Considering the orthogonality condition

1, m=n=0
T(q)T(q)
= =dimd 1/2, =n>1, A6
W'I'I" e o/ :;é:

from (A4b) it may be seen that Ay = 0. Also, by substituting from (AS) into (A4a) and by
using the properties

. 0, n=0, |r|<1
1 Ta(q)
— Upa(r), n2>1, |r|<]1, A7
/ —T)\/IT— l() I I
Gn(r), n=0,1,..., |r|>1,

12




sin(n + 1)0

el (r = (Irl/r)v/r=1)
Gn(r) =—-" ) A9
T re—1
we obtain
> AnUna(a) = =P(). A10
m=1 Eo

As an example consider now the remote "bending" of the medium for which we have
P(z') = —Epe12’ = —Epe Uy (2') /2. All
From (A10) it then follows that
A =0, Ay=-e1, An=0, m2>3 Al2
and the solution becomes

€1T2(S/) _ 61(28’2 - 1)

G(')=— =— ) Al3
() V1-s? V1-g?
giving the stress intensity factors
1
kl (CL) = %Eoé‘] \/—C;, kl (—a) = —'2’E0€1 \/E Al4

Since the negative stress intensity factor (A14b) implies interpenetration of the crack
surfaces, the solution given by (A13) is not valid. The correct solution may be obtained by
taking into account the crack surface contact near the end x = —a. Let the contact region
be —a <z < —b with b being an unknown constant to be determined from the
smoothness condition k;(—b) = 0. The integral equation (A1) and the single-valuedness
condition (A2) may then be modified as

-1—/ M=—2—-p(:c), -b< z<a, Al5

)y s—% Ey

1 a

= / g(s)ds =0, Al6
TJ-b

By defining the following normalizations

22 4= 220 gs) = G(S), pla) = P(X), A7

s=cS+d,z=cX+d,c= 5

(A15) becomes
13




1 1 GB)ds 2

;/_1 e -EOP(X), -1<X<1l Al8
Applying again remote "bending" we have

T c d

p(:v) = —E0€1 (;) = —E0€1 [;X*{‘ ;] = P(X) Al9

The integral equation (A18) then becomes
1

= G—(S—)ﬁ=—2€1[fx+fl-}, ~1<X<1, A20

o, S—X a a
Again assuming the solution as given by (A5) it can be shown that

= c d

Z AmU _1(X) = —261 [-'X+ —]. A2l

= a a
By observing that Up(X) = 1 and U;(X) = 2X, from (A21) it follows that

d c
A = —261;, A2 =—€1;, An =0, m>2. A22

Thus, the solution becomes

&1 1 2
G(S) = ———F=—=[2dS +c(1 — 25%)], A23
(§) = =% e 25+ c(1-257)]
giving
-b
ky(a) = Eoe14/c (3a4a ), A24
ki (=b) = —Eoe1/c ( 3b 4; “). A25
From the smooth contact condition k; (—b) = 0, the unknown constant b is found to be
1
= 3@ A26
From A24 and A26 it then follows that
_ki(a) 2 _ki(a)
= = =-\/2 3 = 0.5443. A27
E()El\/_ Eo& \/— /

Figure Al shows the crack surface displacements obtained from (A13) by ignoring the
interpenetration of crack surfaces and from (A23) by taking into account crack closure
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along —a < z < —b. From Figure Al and equation (A27) it is seen that the crack closure
near the end x = —a leads to magnification of stress state near the crack tip z = a and
there is approximately a 9% increase in the stress intensity factor k; (a) over the nominal
value obtained by ignoring crack surface contact.

0.3
0.2
0.1
¥(z,0) 0.0 |

Vo

-0.1

-0.3 A 1 . 1 ' 1 N
-1.0 -0.5 0.0 0.5 1.0

z/a

Figure A1 Crack surface displacements in a homogeneous isotropic
medium subjected to remote bending €,, = €;(x/a) and obtained by
ignoring crack closure and by taking it into account; vy = 2¢1a.

After solving the perturbation problem (A15) the stress o,,(z, 0) on the plane of the

crack may be obtained by using (A7), (A9), (All) and (Al8) and by adding the
homogeneous stress o, = Eoe;(z/a) as follows:

0, -b<z<a,

Uyy(x,0)= E d
?O[AlGl (X) + A2G(X)] + Eoey (gx + ;>,
X=x:d, c=a—2|-b, d-——a;b, —o<z<-b a<zr<oo, A28

or by observing that b = a/3 it may be shown that

15




ow(z,0) _ )% XI<1
Boer | XI__L1__ X—@\/X?—H(X—'—)—‘r-|\/xz’-—1)2
3X/x2-1 X X
+2X3+1, |X| > 1. A29

Figure A2 shows the stress distribution expressed by (A29). Note that, as expected,
Oyy(z,0) < 0 for z < —b.

-1 -b/a

Figure A2 The stress oy, in the plane of the crack in a homogeneous
isotropic medium under remote "bending" ¢, = &,(z/a).

Let us now assume that a homogeneous isotropic medium containing a crack along
—a <z <a,y=0 is subjected to remote “tension” e,, =¢€o as well as “bending”
€4y = €1(x/a). The input function in the integral equation (A1) would then be

- _ I\ = - z =&
i) = Blara()]—-Bae (@] 52
giving the solution as follows:
n o ]- / / !
G(S) = W[AITI(S)"‘AQT?(S )], S —s/a, A3l
A1 = —2€1ﬂ, A2 = —£, A32
16




ki(a) 1
-—_Eoel\/a = 2(2/3-!— 1), A33
bia) 1,

v(:zOO) (,B+ )\/1 — (z/a)?, —a<z<a. A35

The solution given by (31)-(35) is valid provided k;(—a) > 0. From (A34) the critical
value of the strain ratio 8 = € /e; for which b = a or k;(—a) = 0 is found to be

(eo/€1), = Be = 1/2. A36

Thus, crack closure would take place if 8 < B, (or if kj(—a) < 0 ). In this case the
solution is obtained from (A15) and (A30) by assuming that b < a and by following the
procedure outlined by (A17)-(A27). It may then be shown that

G(S) = ﬁmm (S)+ 4Ta(S)), S=(s—d)/e, A37
A = -2 (ﬁ + g) 4y =—61(2) A38
bota+e, S=la+s, Z-la-2m), A39
E@(I;‘_\’})E —o0, A41

v(xo) (1+/6)21+X)\/1—X2 w=260 z=cX+d |X|<l A4

Figure A3 shows the crack surface displacement v(z,0), —b < z < a, the size of the
contact zone b and the normalized stress intensity factors for various values of the strain
ratio B = g /€;.
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~ % | b/a ki(—a) | _Fki(a)

&1 Eo€1\/C-l E()El\/a
1.0 1 0.5 1.5
0.75 1 0.25 1.25

0.5 1 0.0 1.0
0.25 2/3 0.0 0.7607
0.0 1/3 0.0 0.5443
i T I T I i I T |
1.00 + p=1.0 ——
i £=0.75 i
0.75 - Bc=0.5 n
v(z,0) i i
o 0.50 (3=0.25
i £=0.0
025
0.00 I | I | !
-1.0 -0.5 0.0 0.5 1.0
z/a

Figure A3 The crack surface displacement, the contact zone size and the
normalized stress intensity factors in a cracked isotropic homogeneous
medium subjected to the remote loading €,, = € + €1(x/a), vo = 2¢;a.
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APPENDIX B

Evaluation of the Kernel

For an isofropic inhomogeneous medium containing a series of collinear cracks along the
z axis the kernel of the integral equation (15) may be expressed as

2 k+ia
R(w) = z'/.oo Jva? T A(kE + iak)

Defining A = /2 and observing that k? + iak = (k +i4)* + A2, from (B1) it follows
that :

ei"“’dk=2(é+R2(w)), w=s—1z. B1

(k+1i24)
R _— -
W= / V@ +1)42 + (k +i4)

Changing the variables ¥ = AV and assuming A > 0, (B2) becomes

(V + 2i)
R(w) =~
Y /\/(V+1)+(V+i)2

or,bylettingU =V +i, v+1=C?and B= Aw we find

et dk. B2

eAveqy, B3

Ae oo+ _U+i

Rw)=—F eBUdU. B4
)= ~oo+i 02 +U?
By substituting U = —U" and observing that
(U +9) n_ [T U =9 _msy .
wVerore L Ve P
(B4) may be written as

) Y WU-d)
R(w)—Ae {[z (_;>\/?+———U_26 dU
ot (1 (U+1i) v
+f,- (i>\/C2+U2e ad
oo+i
= 2AeB§R{ (U _W+) "BUdU}. B6
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We now consider

ot (U +1)

i ivC?+U?

I = eBUdU, B> 0. B7

Ya

i(R+1)

i(C +¢)
iC¢ v
i(C —¢€)

R+

v

0 T

Figure B1 Contour used in evaluating I;

Referring to Figure B1 we have

R+i i(C+e) i
(Z+'l) ;Bzdz_/ / / / / =O’ B8
iV 22+ C? i{(R+1) v Ji(C—¢)
For R 00 and €—0 it can be shown that the integrals over the arcs v and I in (B8) are
zero and from (B8) it follows that
00+1 U ) o) 1
( + Z) zBU dU = y+

= —Z ¢
i i/ C?2 +U? c V¥ —-C?

+1i _ﬂl_ e—By d,y' . B9

I =




By substituting y = CY in the first integral, (B9) becomes
ot (U +1) iBU g7 ® CY +1

L= ) = | XXl -Bovyy
i W/ C?2+U? 1 VY2-=1
C
. y+1 g
+1 A '—C{_—yze Ydy.

From (B6), (B7) and (B10) it then follows that

oo+1 . 0o
R(w) = ZACB% (U + z) eiBUdU = 2Ae3/ __C._Y_i__]L_e—BC'Y dY
1 VY2-1

i 1/ C?21+U?

By using the following expressions of the modified Bessel functions

00 1 0o z
= —PT = —pT
KO (p) /1 \/me dm, Kl (p) [ \/:Dz——le dz,

(B11) becomes

R(w) = 24¢B{CK,(BC) + Ko(BC)} = 2 (é +R, (w)) .

y A
. R+
1
0 .
—i(C —¢) T
—iC ¢ ~
—i(C +¢) 2
—i(R-1)

Figure B2 Contour used in evaluating I,
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Let us now assume that B < 0, B = —B' and define the function

00+ (U +i)
i ivC2+U?

Referring to Figure B2 we have

. R+i —i(C+e) i
_(z49) "B'zdz—/ / / / / =0, B15
iV C? + 22 —i(R-1) v J=i(C-¢)

Again, for R—00 and €—0 it can be shown that the integrals over the arcs -y and T" in
B15 are zero and I, becomes

L= e BUdU, B >0, Bl4

1—2 — (U+2) ——zB’UdU — _g__z"*";)e—iB’zd‘z
i iV C? 4+ U? ~ic 1/ C? + 2?
i ' (z + 1‘) —iB’zdz
—ic i/ C? + 22
© (~y+1) _p P (w41 g
—— e By —i IO e~ ¥dy, BI16
or
*H_(U+d) sy © (-y+1) _p
R ——=—e " dU } = et @ V(]
{ N YO JE-cro W
— / (—CY+ 1) e—B'CYdY
1 Y?2-1
=-CK,(B'C)+ Ky(B'C). B17
Thus, for any real constant B, positive or negative, we find
R(w) = 2AeB{Cl§|K1(IBIC) + Ko(|B|C)} = 2(% + Rz(w)), B18
A=a/2, C=+1+v, B=Aw=g—(s—x). B19
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The Antiplane Shear Problem for a Graded Medium Containing a
Crack

It can be shown that the integral equation corresponding to an infinite inhomogeneous

APPENDIX C

isotropic medium containing a crack and subjected to anti-plane shear loading is given by

) .ls—7
g(z) = -6—1%?-)-,
Mate,9) = Ze{ Bk 3 + koD } -

=2(s-2)

1
s—x

1 / ’ [ My, s)] g(s)ds = ie’”ayz(w, 0),

’

—-a<z<a,

C1

C2

C3

c4

where Ko(z) and K;(z) are the modified Bessel functions of order zero and one
respectively. It is again assumed that the shear modulus of the medium is approximated by
u(z) = poexp(ax). Note that the kernel of the integral equation (C3) is nearly identical to
that given by (20) for the in-plane problem. Table C1 shows some sample results obtained
from (C1) and their comparison with that obtained by delale (1985) numerically. Since the

kernel is in closed form, (C1) can be solved within any desired degree of accuracy.

Table C1 The normalized mode III stress intensity factor for an
inhomogeneous isotropic medium subjected to uniform crack surface

traction, 0y, (z,0) = —py,—a < z < a.

Delale [1985] Present
—R@) [ k(=) [ k@) [ k(=a)

mva | mva | my/a | my/a
00 |10 1.0 1.0 1.0
0.1 |1.024 0.973 1.0228 | 0.9731
0.2 | 1.045 0.944 1.0427 | 0.9443
03 1063 |0.914 1.0605 | 0.9149
0.4 | 1.080 0.884 1.0763 | 0.8857
0.5 |1.095 |0.855 1.0906 | 0.8570
0.75 | 1.127 | 0.787 1.1205 | 0.7894
1.00 { 1.153 | 0.726 1.1438 | 0.7291
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” z,(¥)

E(z,)

Lk——l ' Lk

0 ay, by ()

Figure 1 Geometry and notation of the collinear crack problem

20 F T T T | T I T ]
1.5
w=0) 1.0
Vo
0.5
0.0 !
-1.0 0.5 0.0 0.5 1.0

z/a
Figure 2 Crack surface displacements v(x,0) in an inhomogeneous isotropic medium
under uniform pressure p, applied to the crack surfaces. ( vp = 2apy(1 — v?)/E,
v = 0.3, plane strain conditions.)
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5 B 1 Izcl | I I zclz |
. a, OI bld a, |
4 |—
WO
‘k‘(})‘ B kl(bl)/ko ]
2 — |
N =09 _
0.75
1 ki(a,)/k 0.0
0 j 1 i | ! ] ]
0.0 0.5 1.0 1.5 2.0
acy

Figure 3 Stress intensity factors at the tips a; and b; of two unequal cracks in an isotropic
FGM under fixed-grip condition, o0y,(z,0) = —FEoeoexp(ax), ko = Eoeo /c1,
Eo=Ey/(1-1?), ca/c; = 0.25, v =0.3.

6

0.0 0.5 1.0 1.5 2.0
(678]

Figure 4 Stress intensity factors at the tips a; and b, of two unequal cracks in an isotropic
FGM under fixed-grip condition, oy, (z,0) = —Eocoexp(azx), ko = Eogoq/c1,
Eo=Ey/(1-12),(ca +¢1)/d =0.75 v =0.3.
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- 1 I 2Cl| ' I I |2c2' I
3 - al 0 bld a, | b2 |
| — —k,(b,) /K, ac,=1.0 h
—— ky(a,)/ky ___’/
2 0.5 /—
ky -
ko = , — 0.0/-'
1 — i
0.0
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1.0
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(c1 +¢2)/d

Figure 5 Stress intensity factors at the tips a; and b; of two unequal cracks in an isotropic
FGM under fixed-grip condition, 0y,(z,0) = —Eoeoexp(az), ko = Eoco /a1,
Eo=Ey/(1 —1?), ca/c; = 0.25, v = 0.3.

0.0 0.2 0.4 0.6 0.8 1.0
(1 +¢2)/d

Figure 6 Stress intensity factors at the tips a; and b; of two unequal cracks in an isotropic
FGM under fixed-grip condition, 0y, (z,0) = —Eocoexp(az), ko = Eocoq/c1,
Eo=Ey/(1 =1, ac; =05, v=0.3.
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1.0 —
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0.8 (—

0.7 —

0.0 0.2 0.4 0.6 0.8 1.0
(C1 +Cz)/d

Figure 7 Stress intensity factors at the tip a; of two unequal cracks in an isotropic FGM
under  fixed-grip  condition,  &,,(z,0) = —FEgeoexp(az), ko = Eogoy/c1,
Eo = Eo/(l - Vz), ac) = 0.5, v =0.3.

30 T ' T l T
2¢c,
e, 0 b,
B k1(“2)/k0
—_— —k. (b)) /k
ko 3 (c,+cz)/d=0-25/
2 /
1
0
0.0 0.2 0.4 0.6 0.8 1.0

ac

Figure 8 Stress intensity factors at the tips a; and b, of two unequal cracks in an isotropic
FGM under fixed-grip condition, oy (z,0) = —Eocoexp(az), ko = Eocoq/c1,
Eo=Ey/(1—1?),c0/cy =0.1, v =0.3.
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(8143

Figure 9 Stress intensity factors at the tips a; and b, of two unequal cracks in an isotropic
FGM under fixed-grip condition, oy (x,0) = —FEpeoexp(azx), ko = Eoeo \/a,
Eo=Ey/(1 = 1?), ea/c; = 0.25, v = 0.3.

T I T I T l T [ ¥

0.0 0.2 0.4 0.6 0.8 1.0
acy

Figure 10 Stress intensity factors at the tips a; and b; of two unequal cracks in an
isotropic FGM under fixed-grip condition, o,(z,0) = —Eoeoexp(az), ko = Eocoq/c1,
Eo = Eo/(]. - Uz), (62 + Cl)/d2 = 0.75, v =0.3.
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Figure 11 Stress intensity factors at the tips a; and b; of two unequal cracks in an
isotropic FGM under fixed-grip condition, ay,(z,0) = —Eoeoexp(az), ko = Eoeo /c1,
Eo = Ey/(1 —12), ca/c; = 0.25, v = 0.3.

c2¢c2 - 2¢ —
a, b, d a, 0 b,
T 1 . | T | ' l L B—
1.5 kl(bl)/kL___/j
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1.0 0.0
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ﬂ
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Figure 12 Stress intensity factors at the tips a; and b; of two unequal cracks in an
isotropic FGM under fixed-grip condition, o,,(z,0) = —Eqeoexp(az), ko = Eoo \/c_:f,
Eo = Eo/(1 —1?), ac, = 0.5, v = 0.3.
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Figure 13 Stress intensity factors at the tips a; and b, of two unequal cracks in an
isotropic FGM under fixed-grip condition, oy, (z,0) = —Eocoexp(azx), ko = Eo€o+/C1,
Eo = Ey/(1 —1?), ¢/ = 0.1, v = 0.3.
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Figure 14 Stress intensity factors at the tips a; and b, of two unequal cracks in an
isotropic FGM under fixed-load condition, a,,(x,0) = —py, ko = po/c1, ¢2/c1 = 0.25,
v=0.3.
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Figure 15 Stress intensity factors at the tips a; and b of two unequal cracks in an isotropic
FGM under fixed-load condition, o,,(z,0) = —p, ko = m+/c1, c2/c1 = 0.25, v = 0.3.
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Figure 16 Stress intensity factors at the tips a, and by of two unequal cracks in an
isotropic FGM under fixed-load condition, o,(z,0) = —py, ko = po+/c1, c2/c1 = 0.1,
v =0.3.
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Figure 17 Stress intensity factors at the tips a; and bjof two unequal cracks in an
orthotropic FGM under fixed-grip condition, 0y, (z,0) = —eoEp/b2exp(az;),
ko = (EoEo/ég)\/C_l_, 62/01 = 0.25, K = 0.5, v=03.

6 T ] T ] T l T

0.0 0.5 1.0 1.5 2.0
ac)

Figure 18 Stress intensity factors at the tips a; and b;of two unequal cracks in an
orthotropic FGM under fixed-grip condition, oy,(z,0) = —eoEo/8iexp(az,),
ko = (€0E0/6(2))\/21_, (Cz + Cl)/d = 0.75, K= 0.5, v =0.3.
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Figurel9 Stress intensity factors at the tips a; and b,of two unequal cracks in an
orthotropic FGM under fixed-grip condition, &,,(z,0) = —Fyeo/62exp(az; ),
ko = (E()Eo/(sg)‘/cl, (Cg + Cl)/d = 05, Cz/Cl = 025, v =023
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Figure 20 Stress intensity factors at the tips a; and b; of two unequal cracks in an
orthotropic FGM under fixed-grip condition, &y,(x,0) = —Eoeo/62exp(az:),
ko = (E()E()/(Sg)\/c_, ac) = 0.5, 62/61 = 0.25, v =0.3.
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Figure 21 Stress intensity factors at the tips a; and b; of two unequal cracks in an
orthotropic FGM under fixed-grip condition, o0,,(z,0) = —FEeo/62exp(az;),
ko = Eoeo/6%\/c1, ac; = 0.5, v = 0.3, k = 0.5.
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Figure 22 Crack surface displacement for an isotropic inhomogeneous medium under
fixed-grip  condition,  disregarding interpenetration = of crack  surfaces,

oyy(z,0) = —Eoe (z1/a)exp(az,), vo = 2¢;a, Ey= Ey/(1 - 1?),v=03.
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Figure 23 Crack surface displacement for an isotropic inhomogeneous medium under
fixed-grip condition in the presence of smooth contact, o, (x, 0) = —Ep€) (z/a)exp(az),
v = 2614, Ey = Eo/(l - V2),l/ =0.3,¢ >0.
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Figure 24 Crack surface displacement for an isotropic inhomogeneous medium under
fixed-grip condition in the presence of smooth contact, o, (x,0) = —Eoe; (z/a)exp(azx),
v = 2610, Eo = Ey/(1 — 12),v = 0.3,6, < 0.
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Figure25 Crack surface displacements for an infinite isotropic inhomogeneous medium
under fixed-grip condition : ey, = & +£1(z/a), €0 /€1 = B, B. = 0.4485, aa = 0.5,
v=20.3.

oyy(z,0)

Epeo 2

Figure 26 The stress distribution in the plane of the crack in an inhomogeneous isotropic
medium with two unequal colinear cracks under the remote loading 04(x,0) = g0 Epe™?,

acy = 0.25, ca/c; = 0.1, (¢c1 + ¢2)/d = 0.25, o7 (,0): the total stress, ob.(x,0) : the
perturbation, o7 (z, 0): stress at infinity (the applied stress), o7, = of, + o5y
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Table 1 The normalized stress intensity factors for an inhomogeneous isotropic
medium under crack surface tractions given by Eq. 27 (v = 0.3).

Plane Strain

e ki(a) | ki(=a) | ki(a) | ki(=a) | ki(a) | ki(—a) | ki(a) | ki(—a)

mvea | myva | myva | pyva | pay/a | pay/a | psy/a | psv/a
0.00 | 1.0 1.0 0.5 ~0.5 05 0.5 0375 | —0375
0.01 | 1.0025 | 0.9975 | 0.5000 | —0.5000 | 0.5006 | 0.4994 | 0.3750 | —0.3750
0.10 | 1.0238 | 0.9740 | 04998 | —0.4998 | 0.5060 | 0.4935 | 03749 | —0.3749
0.25 | 1.0567 | 0.9334 | 0.4989 | —0.4986 | 0.5142 | 04833 | 03745 | —0.3743
0.50 | 1.1062 | 0.8667 | 04962 | —0.4944 | 0.5267 | 0.4665 | 03731 | —03722
0.75 | 1.1504 |0.8044 | 0.4923 | —0.4878 | 0.5379 | 04505 | 03711 | —0.3689
1.00 | 1.1902 | 0.7480 | 0.4876 | —0.4793 | 0.5483 | 0.4357 | 0.3688 | —0.3646
1.50 | 1.2598 | 0.6536 | 0.4771 | —0.4590 | 0.5668 | 0.4098 | 0.3634 | —0.3542
3.00 | 13195 |0.5810 | 0.4660 | —0.4371 | 0.5833 | 0.3881 | 0.3580 | —0.3429

Plane Stress

oa | F1(a) | Ki(=a) | Ki(a) | Fi(=a) | Ku(a) | Ki(=a) | Ki(a) | ki(-—a)

myvea | my/a | pyva | mya | p2va | payv/a | pay/a | psy/a
000] 1.0 1.0 0.5 ~05 0.5 0.5 0375 | —0375
0.01 | 1.0025 | 0.9975 | 0.5000 | —0.5000 | 0.5006 | 04994 | 0.3750 | —0.3750
0.10 | 1.0235 | 09737 | 04998 | —0.4998 | 0.5050 | 0.4934 | 03749 | —0.3749
025 | 1.0553 | 0.9324 | 0.4980 | —0.4985 | 0.5139 | 04831 | 0.3745 | —0.3720
0.50 | 1.1019 | 0.8640 | 0.4962 | —0.4941 | 0.5256 | 04658 | 03731 | —0.3720
0.75 | 1.1421 | 0.8002 | 0.4923 | —0.4870 | 0.5359 | 04494 | 03712 | —0.3685
1.00 | 1.1774 | 0.7427 | 0.4879 | —0.4781 | 0.5451 | 0.4343 | 03689 | —0.3640
150 | 1.2369 | 0.6473 | 0.4780 | —0.4570 | 0.5611 | 04079 | 0.3639 | —0.3532
3.00 | 1.2862 | 0.5746 | 0.4680 | —0.4345 | 0.5749 | 03859 | 0.3590 | —0.3415

Table 2 The normalized stress intensity factors for

an inhomogeneous

isotropic medium under fixed - grip condition ( Ey = E, for plane stress,
Eq = Ey/(1 — v?) for plane strain , v = 0.3, see Eq. 30).

v=203 Plane Strain Plane Stress
o k(a) klﬁ‘a) ki(a) k1~(‘¢l) ki(a) k1~(-—a) ki(a) kl_.("*ﬂ)
eFov/e | ©Eov/a | € Eoy/a | aE/a | eEo/a @Eo/a | e Eoy/a | 6Ep/a
0.00 1.0 1.0 0.5 -0.5 1.0 1.0 0.5 —-0.5
0.01 1.0075 0.9925 0.5050 -0.4950 | 1.0075 0.9925 0.5050 —0.4950
0.10 1.0764 0.9264 | 0.5523 —0.4523 | 1.0761 0.9261 0.5523 —0.4522
0.25 1.1986 0.8230 0.6402 —0.3886 | 1.1972 0.8219 0.6401 —0.3885
0.50 1.4290 0.6710 | 0.8151 —0.3010 | 1.4245 0.6683 0.8146 —0.3009
0.75 1.7029 0.5434 | 1.0326 —0.2325 | 1.6940 0.5395 1.0311 —0.2326
1.00 2.0332 0.4379 1.3029 —0.1794 | 2.0189 0.4331 1.2997 -0.1795
1.50 2.9294 0.2811 2.0570 —0.1064 | 2.9012 0.2760 2.0482 —0.1067
2.00 4.2933 0.1786 3.2297 —0.0631 | 4.2454 0.1741 3.2107 —0.0633
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Table3 The effect of Poison's ratio on the normalized stress intensity factors
for an inhomogeneous isotropic medium (Eo = Eo for plane stress,
Ey = Ey/(1 — 1?) for plane strain, see Egs. 28 and 30).

Plane Strain
aa =05 Fixed-Grip Fixed-Load
Y ki(a) | ki(=a) [ kila) | ki(=a) | ki(e) | ka(—a) | ki(a) | ki(—a)
GOEO\/G_ GOEO\/; GxEo\/E 6150\/4_ PO\/E PO\/Z Pl\/; Py/a
0.0 14129 |0.6615 |0.8131 —0.3009 | 1.0906 | 0.8570 |0.4961 | —0.4932
0.1 1.4174 |0.6641 [0.8137 —0.3009 | 1.0950 | 0.8597 |0.4961 | —0.4935
0.2 1.4227 10.6672 |0.8143 —-0.3009 {1.1001 | 0.8629 |0.4962 | —0.4939
0.3 1.4290 |0.6710 |0.8151 —0.3010 | 1.1062 | 0.8667 |0.4962 | —0.4944
04 1.4368 |0.6755 |0.8162 —0.3010 }1.1137 | 0.8715 |0.4963 | —0.4950
0.5 1.4468 |0.6814 |0.8176 —0.3011 | 1.1234 | 0.8775 |0.4964 | —0.4959
Plane Stress
aca =05 Fixed-Grip Fixed-Load
” ki(a) | ki(=a) | ki(a) | ki(=a) | ki(a) | ki(~a) | ki(e) | ki(—a)
GOEoﬁ GOEO\/Z €1E0\/z €1E0\/71- Pb\/; 170\/a Pl\/t_l hiy/a
0.0 1.4129 | 0.6615 | 0.8131 | —0.3009 | 1.0906 | 0.8570 | 0.4961 | —0.4932
0.1 1.4170 | 0.6639 | 0.8136 | —0.3009 | 1.0946 | 0.8594 | 0.4961 | —0.4935
0.2 1.4208 | 0.6661 | 0.8141 | —0.3009 [ 1.0983 | 0.8618 | 0.4961 | —0.4938
03 1.4245 0.6683 0.8146 | —0.3009 | 1.1019 | 0.8640 |0.4962 | —0.4941
0.4 1.4280 | 0.6704 | 0.8150 | —0.3009 | 1.1053 | 0.8661 | 0.4962 | —0.4943
0.5 1.4314 | 0.6724 | 0.8155 | —0.3010 | 1.1085| 0.8682 | 0.4962 | —0.4946
Plane Strain
aa = 1.0 Fixed-Grip Fixed-Load
v k(@) | ki(=a) | ki(e) | ki(=a) | k(a) | ki(=a) | ki(e) | ki(~a)
EOEO\/E GOEo\/l; 6150\/5 6150\/; by a PO\/E Pl\/a hyy/a
0.0 1.9819 0.4208 1.2917 | —0.1798 | 1.1438 | 0.7291 |0.4888 | —0.4752
0.1 1.9963 0.4256 1.2948 | —0.1797 | 1.1569 | 0.7344 | 0.4884 | —0.4763
0.2 2.0132 | 0.4312 1.2984 | —0.1795 | 1.1722 | 0.7406 | 0.4880 { —0.4777
0.3 2.0332 | 0.4379 1.3029 | —0.1794 | 1.1902 | 0.7480 | 0.4876 | —0.4793
04 2.0576 | 0.4459 1.3084 | —0.1793 [ 1.2121 | 0.7569 | 0.4874 | —0.4813
0.5 2.0885 0.4560 1.3157 | —0.1793 | 1.2396 | 0.7683 |0.4873 | —0.4840
Plane Stress
aa = 1.0 Fixed-Grip Fixed-Load
v kl(a) kl(—a) kl(a) kl(—a) kl(a) kl(—a) kl(a) k](—a)
60E0\/5 EOEO\/Z €1Eo\/5 €1EO\/¢_1 Doy a PO\/E Pl\/a p,ﬁ
0.0 1.9819 | 0.4208 1.2917 { —0.1798 | 1.1438 | 0.7291 | 0.4888 | —0.4752
0.1 1.9949 | 0.4251 1.2945 | —0.1797 | 1.1556 | 0.7339 |0.4884 | —0.4762
0.2 2.0072 | 0.4292 1.2971 | —0.1796 | 1.1668 | 0.7384 | 0.4881 | —0.4772
0.3 2.0189 | 0.4331 1.2997 | —0.1795 | 1.1774 | 0.7427 {0.4879 | —0.4781
04 2.0301 0.4368 1.3022 | —0.1794 | 1.1874 | 0.7468 [ 0.4877 | —0.4790
0.5 2.0407 | 0.4404 1.3046 | —0.1793 | 1.1970{ 0.7507 | 0.4875 | —0.4799
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Table 4 The normalized stress intensity factors for an inhomogeneous isotropic
medium under fixed - load condition for the case of plane strain (v = 0.3 ).

Prosent Delale and Erdogan [1983]
o ki(a) | ki(—a) | ki(a) | ki(—a) | ki(a) | ki(—a) | ki(a) | ki(—a)
mya | mya | mva | mve | po/a | po/a | pw/a | pn/a
000 ] 1.0 1.0 0.5 -0.5 1.0 1.0 0.5 —0.5
0.01 { 1.0025 0.9975 0.5000 —0.5000 | 1.003 0.997 0.500 —0.500
0.10 | 1.0238 0.9740 0.4998 —-0.4998 | 1.026 0.973 0.500 -0.500
0.25 | 1.0567 ] 09334 | 0.4989 | —0.4986 | 1.061 | 0931 | 0.498 | —0.499
050 | 11062 | 0.8667 | 04962 | —0.4944 | 1117 | 0.863 | 0.494 | —0.495
0.75 | 1.1504 0.8044 0.4923 -0.4878 | 1.170 0.801 0.489 -0.489
1.00 | 1.1902 0.7480 0.4876 —0.4793 1.222 0.745 0.483 —0.481

Table 5 The normalized stress intensity factors for an inhomogeneous isotropic
medium under fixed - load condition for the case of plane stress (v = 0.3 ).

Present Delale and Erdogan [1983]

o ki(a) | ki(=a) | ki(a) | ki(=a) | kila) | ki(=a) | kila) | ki(—a)

mva | myva | myva | mva | po/a | po/a | p1/a | pr/a
0.00 | 1.0 1.0 05 —0.5 1.0 1.0 05 0.5
0.01 | 1.0025 | 09975 | 05000 | —0.5000 | 1.003 | 0997 | 0.500 | —0.500
0.10 | 1.0235 | 09737 | 04998 | —04998 | 1.025 | 0973 | 0500 | —0.500
025 | 1.0553 | 09324 | 04989 | —0.4985 | 1.060 | 0930 | 0498 | —0.499
0.50 | 1.1010 | 08640 | 0.4962 | —0.4941 | L1I3 | 0861 | 0495 | —0.495
075 | 1.1421 | 0.8002 | 04923 | —0.4870 | 1.162 | 0797 | 0.489 | —0.489
100 | 1.1774 | 0.7427 | 04879 | —04781 | 1.209 | 0.740 | 0483 | —0.480

Table 6 The normalized stress intensity factors for an inhomogeneous isotropic
medium under fixed - grip condition ( Eo=E, for plane stress,
Ey = Ey/(1 — v?) for plane strain ).

Plane Strain Plane Stress

v=03 Present Delale and Erdogan [1983] Present Delale and Erdogan [1983]
oa ki(a) ki(—a) ky(a) ky(-a) ki(a) ky(—a) ki(a) ki(—a)

GOE'O\/E EOEO\/E EOEO\/E %EO\/E COEO\/E CoEo\/E COEO\/E COEO\/E
0.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.01 1.0075 | 0.9925 | 1.008 0.992 1.0075 | 0.9925 1.008 0.992
0.10 1.0764 | 0.9264 | 1.078 0.925 1.0761 | 0.9261 1.078 0.925
0.25 1.1986 0.8230 1.203 0.821 1.1972 0.8219 1.202 0.820
0.50 1.4290 | 0.6710 | 1.439 0.667 1.4245 | 0.6683 1.435 0.665
0.75 1.7029 0.5434 | 1.721 0.539 1.6940 | 0.5395 | 1.713 0.535
1.00 2.0332 | 0.4379 | 2.063 0.433 2.0189 | 0.4331 | 2.048 0.429
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Table 7 Stress intensity factors at the tips £ = a; and z = b; of two unequal
cracks in an isotropic FGM for the case of plane strain, v =0.3,

Eo = Eo/(1 =12).
Fixed-Grip Oyy(z,0) = —-Eoeoexp(a:c), ko = Eoeo\/a
ac) = 0.5 Cz/cl = 0.25 Cz/Cl =0.75 02/01 =1.0
ki(a;) k1(b1) ki(a1) ki(by) ki(a1) k1 (b1)
c+c)/d
(e1 + )/ ko ko ko ko ko
0.0 0.6710 1.4290 0.6710 1.4290 0.6710 1.4290
0.1 0.6713 1.4299 0.6728 1.4334 0.6735 1.4350
0.2 0.6720 1.4319 0.6766 1.4435 0.6791 1.4495
0.4 0.6740 1.4405 0.6873 1.4805 0.6947 1.5000
0.6 0.6773 1.4634 0.7030 1.5601 0.7171 1.6032
0.8 0.6835 1.5440 0.7284 1.7721 0.7526 1.8624
0.975 0.7034 2.3181 0.7883 3.1421 0.8314 3.4198
1.0 0.7656 oo 0.9395 o0 1.0210 (o%e)
Fixed-Load 0yy(2,0) = —po, ko = my/a
ac; = 0.5 ce/c; =0.25 c2/c1 =0.75 c2/c; =1.0
ki(a1) ki(b1) ki(a1) k1 (b1) ki(a1) k(b))
(cl + C2) / d ko ko ko ko ko
0.0 0.8667 1.1062 0.8667 1.1062 0.8667 1.1062
0.1 0.8667 1.1062 0.8667 1.1062 0.8667 1.1062
0.2 0.8668 1.1063 0.8668 1.1064 0.8668 1.1064
0.4 0.8674 1.1088 0.8687 1.1124 0.8688 1.1125
0.6 0.8692 1.1198 0.8750 1.1405 0.8765 1.1436
0.8 0.8735 1.1686 0.8893 1.2445 0.8945 1.2584
0.975 0.8881 1.7064 0.9280 2.0652 0.9422 2.1280
1.0 0.9334 (o) 1.0258 0o 1.0503 (o)

Table 8 The normalized stress intensity factors for two unequal cracks in an
infinite inhomogeneous orthotropic medium under uniform crack surface
pressure, gy, (z,0) = —po, E(z1) = Eoexp(ax,),v = 0.3, (c1 + ¢2)/d = 0.5.

k=~0.25 /e =025 k=00, o/c;=0.25
acy k(@) | ki) | kile) | ki) || Fula) | k(b)) | Fafa2) ky(b2)
pO\/C—l Po\/a Po\/a PO\/EI— ! Po\/a Po\/a PO\/C—I- Po\/c_l
0.0 | 1.00429 | 1.01010 | 0.55216 | 0.54146 | 0.0 | 1.00429 | 1.01010 | 0.55216 0.54146
0.01 | 1.00171 { 1.01253 | 0.55240 | 0.54232 | 0.01 | 1.00171 | 1.01252 | 0.55240 0.54231
0.10 | 0.97825 { 1.03400 | 0.55437 | 0.54991 | 0.10 | 0.97786 | 1.03357 | 0.55421 0.54976
0.2510.93900 | 1.06872 | 0.55710 | 0.56227 | 0.25 | 0.93743 | 1.06671 | 0.55646 0.56166
0.50 | 0.87545 | 1.12420 | 0.56016 | 0.58189 | 0.50 | 0.87163 | 1.11809 | 0.55856 0.58038
0.75 | 0.81612 | 1.17694 | 0.56131 | 0.60011 | 0.75 | 0.81038 | 1.16556 | 0.55884 0.59774
1.00 | 0.76203 | 1.22710 | 0.56061 | 0.61679 | 1.00 | 0.75489 | 1.20973 | 0.55749 0.61377
1.25 1 0.71342 | 1.27482 | 0.55823 | 0.63194 | 1.25 | 0.70538 | 1.25104 | 0.55471 0.62849
1.50 | 0.67015 | 1.32028 | 0.55437 | 0.64562 | 1.50 | 0.66160 | 1.28987 { 0.55069 0.64197
1.75 1 0.63181 | 1.36367 | 0.54923 | 0.65794 | 1.75 | 0.62305 | 1.32655 | 0.54562 | 0.65430
2.00 | 0.59792 | 1.40519 | 0.54304 | 0.66901 | 2.00 | 0.58915 | 1.36137 | 0.53969 0.66557
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Table 8 (Continued )
k=05 o/c =0.25 k=10, /i =025
ki(ar) | k(b)) | ki(az) | ki(b2) ki(a1) | ki(b1) | kilaz) | ki(b2)

ac

®* | poy/er | poy/er | poy/er | poy/er poy/er | poy/er | poy/er | poy/er

0.0 |1.00429 | 1.01010 | 0.55216 | 0.54146 | 0.0 | 1.00429 | 1.01010 | 0.55216 | 0.54146

0.01 | 1.00170 | 1.01251 | 0.55239 | 0.54231 | 0.01 | 1.00170 | 1.01251 | 0.55239 | 0.54231

0.10 | 0.97746 | 1.03312 | 0.55404 | 0.54960 | 0.10 { 0.97725 | 1.03289 | 0.55395 | 0 .54952

0.25 1 0.93578 | 1.06459 | 0.55575 | 0.56099 | 0.25 | 0.93491 | 1.06348 | 0.55536 | 0.56061

0.50 | 0.86754 | 1.11153 | 0.55669 | 0.57857 | 0.50 { 0.86538 | 1.10805 | 0.55563 | 0.57753

0.75 | 0.80420 | 1.15325 | 0.55579 | 0.59474 | 0.75 { 0.80091 | 1.14668 | 0.55399 | 0.59294

1.00 | 0.74718 | 1.19085 | 0.55341 | 0.60968 | 1.00 | 0.74307 | 1.18072 | 0.55090 | 0.60712

1.25 | 0.69669 | 1.22509 | 0.54981 | 0.62349 | 1.25 | 0.69204 | 1.21113 | 0.54669 | 0.62021

1.50 | 0.65236 | 1.25657 | 0.54521 } 0.63626 | 1.50 | 0.64742 | 1.23862 | 0.54157 | 0.63234

1.75 | 0.61357 | 1.28579 | 0.53981 | 0.64809 | 1.75 | 0.60850 | 1.26377 | 0.53577 | 0.64362

2.00 | 0.57964 | 1.31314 | 0.53375 | 0.65906 | 2.00 | 0.57457 { 1.28702 | 0.52942 | 0.65412

k=50, e/c; =025 k=-025 /e =10

ki(a1) | ki(by) [ ka(az) | ki(b2) ki(ai) | k(1) | kilaz) | kilb2)

Pory/er | Poy/er | poy/er | poy/er | - | poy/er | poy/er | poy/er | poy/er

ac)

0.0 | 1.00429 | 1.01010 | 0.55216 | 0.54146 | 0.0 | 1.02796 | 1.04795 | 1.04795 | 1.02796

0.01 | 1.00169 | 1.01250 | 0.55239 | 0.54231 | 0.01 | 1.02477 | 1.04978 | 1.0461 1.0311

0.10 | 0.97681 | 1.03240 | 0.55376 | 0.54933 | 0.10 | .99602 | 1.06556 | 1.0288 | 1.0591

0.25 | 0.93307 | 1.06111 | 0.55451 | 0.55979 | 0.25 | .94961 | 1.09128 | 0.99839 | 1.1045

0.50 | 0.86075 | 1.10060 | 0.55317 | 0.57510 | 0.50 | .87927 | 1.13545 | 0.94573 | 1.1764

0.75 | 0.79385 | 1.13250 | 0.54967 | 0.58855 | 0.75 | .81729 | 1.18161 | 0.89313 | 1.2432

1.00 | 0.73421 | 1.15878 | 0.54467 | 0.60059 | 1.00 | .76231 | 1.22847 | 0.84244 | 1.3046

1.25 { 0.68203 | 1.18078 | 0.53860 | 0.61150 | 1.25 | .71346 | 1.27474 | 0.79476 | 1.3608

1.50 | 0.63676 | 1.19948 | 0.53179 | 0.62148 | 1.50 | .67013 | 1.31969 | 0.75064 | 1.4121

1.75 | 0.59757 | 1.21562 | 0.52447 | 0.63068 | 1.75 | .63179 | 1.36299 | 0.71025 | 1.4592

2.00 | 0.56361 | 1.22978 | 0.51680 | 0.63921 | 2.00 | .59791 | 1.40459 | 0.67350 | 1.5024

k= 0.0, c2fc; = 1.0 £ =0.5, e/ =1.0

ki(a) | ki(ba) [ ki(az) | ka(bo) ac ki(a:) | ki(b1) | kilaz) | ki(b2)
Poy/e1 | poy/er | poy/er | poy/er | | Poy/er | poy/er | poy/er | poy/er
0.0 1.02796 | 1.04795 1 1.04795 | 1.02796 | 0.0 1.02796 | 1.04795 | 1.04795 | 1.02796
0.01 | 1.02476 | 1.04977 | 1.0461 | 1.0311 | 0.01 | 1.02475 | 1.04975 | 1.0461 1.0311
0.10 | 0.99552 | 1.06498 | 1.0282 | 1.0585 | 0.10 { 0.99499 | 1.06435 | 1.0276 | 1.0579
0.25 | 0.94786 | 1.08894 | 0.99606 | 1.0190? | 0.25 | 0.94598 | 1.08641 | 0.99350 | 1.0990
0.50 | 0.87537 | 1.12905 | 0.94040 | 1.1691 | 0.50 | 0.87115 | 1.12210 | 0.93434 | 1.1608
0.75 | 0.81153 | 1.17010 | 0.88560 { 1.2306 | 0.75 | 0.80530 | 1.15758 | 0.87674 | 1.2159
1.00 | 0.75517 { 1.21108 | 0.83370 | 1.2865 1.00 | 0.74746 | 1.19212 | 0.82307 { 1.2651
1.25 | 0.70543 | 1.25099 | 0.78567 | 1.3373 1.25 1 0.69673 | 1.22504 | 0.77421 | 1.3092
1.50 | 0.66159 | 1.28932 | 0.74185 | 1.3835 1.50 | 0.65235 | 1.25606 | 0.73029 | 1.3489
1.75 { 0.62304 | 1.32590 | 0.70217 | 1.4255 1.75 |1 0.61356 | 1.28518 | 0.69109 | 1.3848
2.00 | 0.58914 | 1.36080 | 0.66641 | 1.4640 | 2.00 | 0.57964 | 1.31259 | 0.65616 | 1.4175

Table 8 (Continued )

acy
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& = 1.0, o/a =10 k= 5.0, afa =10
e ki(a1) | k(b)) | ka(a2) | ka(b2) o ki(a1) | ki(by) | ka(az) | k()
mya | mya | mya | my/a mya | my/a | mya | mya
0.0 | 1.02796 | 1.04795 | 1.04795 | 1.02796 | 0.0 | 1.02796 | 1.04795 | 1.04795 | 1.02796
0.01 | 1.02474 | 1.04975 | 1.0461 | 1.0311 | 0.01 | 1.02473 | 1.04973 | 1.0461 | 1.0311
0.10 | 0.99471 | 1.06402 | 1.0272 | 1.0575 | 0.10 | 0.99412 | 1.06333 | 1.0265 | 1.0568
0.25 | 0.94499 | 1.08506 | 0.99213 | 1.0974 | 0.25 | 0.94284 | 1.08218 | 0.98913 | 1.0940
0.50 | 0.86890 | 1.11838 | 0.93097 | 1.1562 | 0.50 | 0.86404 | 1.11032 | 0.92338 | 1.1457 |
0.75 | 0.80198 | 1.15086 | 0.87168 | 1.2075 | 0.75 | 0.79481 | 1.13628 | 0.85991 | 1.1881
1.00 | 0.74334 | 1.18194 | 0.81682 | 1.2527 | 1.00 | 0.73445 | 1.15979 | 0.80183 | 1.2234
1.25 [ 0.69209 | 1.21107 | 0.76727 | 1.2927 | 1.25 | 0.68207 | 1.18065 | 0.75005 | 1.2530
1.50 | 0.64741 | 1.23812 | 0.72308 | 1.3285 | 1.50 | 0.63675 | 1.19898 | 0.70449 | 1.2784
1.75 | 0.60849 | 1.26318 | 0.68390 | 1.3606 | 1.75 | 0.59756 | 1.21507 | 0.66462 | 1.3002
2.00 | 0.57456 | 1.28649 | 0.64923 | 1.3897 | 2.00 | 0.56360 | 1.22929 | 0.62976 | 1.3194

Table 9 The normalized stress intensity factors for two unequal cracks in an
infinite inhomogeneous orthotropic medium under uniform crack surface
pressure, 0, (z,0) = —po, E(z;) = Epexpl(az,), v = 0.3,k = 0.5.

c/a =025, (a+c)/d=0.75 c/c =0.75, (a +c)/d = 0.75

ki(ar) | ki(hy) | ka(az) | ka(b2) ki(ar) | k() | ka(a2) ky (b;)
acy acy

P/ PO\/C_I Doy/C1 Py/a PO\/EI' Py | Poy/a PO\/C_I
0.0 1.01146 | 1.04850 | 0.66867 | 0.60894 0.0 1.04964 | 1.14076 | 1.04573 | 0.94551
0.01 | 1.00880 | 1.05090 | 0.66935 | 0.61018 0.01 | 1.04636 | 1.14252 | 1.0452 0.94823
0.10 1 0.98396 | 1.07123 | 0.67479 | 0.62088 0.10 | 1.01574 | 1.15652 | 1.0389 0.97155
0.2510.94123 | 1.10193 | 0.68212 | 0.63757 0.25 1 0.96426 | 1.17566 | 1.0244 1.0077
0.50 | 0.87140 | 1.14689 | 0.69093 | 0.66332 0.50 | 0.88389 | 1.20191 | 0.99440 | 1.0632
0.75 | 0.80678 | 1.18608 | 0.69652 | 0.68704 0.75 | 0.81314 | 1.22513 | 0.96126 | 1.1138
1.00 | 0.74884 | 1.22084 | 0.69956 | 0.70907 1.00 | 0.75192 | 1.24726 | 0.92738 | 1.1604
1.25 1 0.69772 | 1.25217 | 0.70055 | 0.72964 1.25 1 0.69914 | 1.26906 | 0.89413 | 1.2034
1.50 | 0.65298 | 1.28079 | 0.69990 | 0.74892 1.50 | 0.65361 | 1.29073 | 0.86230 | 1.2432
1.75 1 0.61394 | 1.30729 | 0.69792 | 0.76707 1.75 1 0.61421 | 1.31230 | 0.83227 | 1.2802
2.00 | 0.57986 | 1.33211 | 0.69487 | 0.78420 2.00 | 0.57996 | 1.33373 | 0.80422 | 1.3146

CQ/C] = 1.0, (C]+02)/d=0.75
ey ki(a1) | ki(b) | kalaz) | ka(be)
mya | mya | mya | mya
0.0 1.06844 | 1.17318 | 1.17318 | 1.06844
0.01 { 1.06475 | 1.17451 | 1.1717 1.0720
0.10 | 1.03045 | 1.18417 | 1.1565 1.1028
0.2510.97370 | 1.19589 | 1.1262 1.1500
0.50 | 0.88781 | 1.21176 | 1.0707 1.2213
0.75 1 0.81450 | 1.22790 | 1.0150 | 1.2853
1.00 | 0.75226 | 1.24581 | 0.96240 | 1.3434
1.25 1 0.69915 | 1.26541 | 0.91427 | 1.3963
1.50 | 0.65354 | 1.28619 | 0.87088 | 1.4448
1.75 | 0.61414 | 1.30762 { 0.83206 | 1.4894
2.00 | 0.57991 | 1.32931 | 0.79742 | 1.5307

Table 9 ( Continued )
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ofa =025 ac =05 &/a =075, aq=05

ato | kia) [ k) [ ke) | ki) |ate | kia) | k) | kle) | kb)

d |mya |mv/a |mv/a (mv/a ]| 4 |ava | wya | mya | mya

0.0 08661 | 1.1053 | 0.4331 |0.5527 | 0.0 0.8661 | 1.1053 | 0.7501 |0.9572

0.1 0.86614 | 1.10527 | 0.48805 | 0.51930 | 0.1 0.86614 | 1.10526 | 0.78301 | 0.94138

0.2 0.86619 | 1.10539 | 0.49731 } 0.52839 | 0.2 0.86622 | 1.10545 | 0.79236 | 0.95090

0.3 0.86640 | 1.10607 | 0.51092 } 0.54096 | 0.3 0.86674 | 1.10694 | 0.80597 | 0.96313

04 0.86683 | 1.10783 | 0.53004 | 0.55743 | 0.4 0.86809 | 1.11143 | 0.82517 | 0.97818

0.5 0.86754 | 1.11153 | 0.55669 | 0.57857 | 0.5 0.87055 | 1.12107 | 0.85224 | 0.99643

0.6 0.86863 | 1.11885 | 0.59451 | 0.60569 | 0.6 0.87439 | 1.13943 | 0.89137 | 1.0187

0.7 0.87026 | 1.13374 | 0.65093 | 0.64115 ] 0.7 0.88008 | 1.17380 | 0.95114 | 1.0464

0.8 0.87287 | 1.16752 | 0.74431 | 0.68972 | 0.8 0.88862 | 1.24313 | 1.0531 | 1.0828

0.9 0.87776 | 1.26963 | 0.94244 | 0.76440 | 0.9 0.90295 | 1.42220 | 1.2792 | 1.1376

0.95 0.88273 | 1.44262 | 1.1969 | 0.82657 | 0.95 0.91588 | 1.68871 | 1.5825 | 1.1836

1.0 0.9326 | o0 0 1.2606 | 1.0 1.0244 oo o0 1.5458

ofa =10, ac=0.5

ki(a1) ky (bl) ki(az) ky (bz)
mya | mya | mya | mya
0.8661 | 1.1053 | 0.8661 | 1.1053
0.86614 | 1.10526 | 0.86986 | 1.1096
0.86620 | 1.10541 | 0.87854 | 1.1187
0.86671 | 1.10682 | 0.89116 | 1.1302
0.86823 | 1.11153 | 0.90900 | 1.1441
0.87115 | 1.12210 | 0.93434 | 1.1608
0.87588 | 1.14252 | 0.97136 | 1.1810
0.88301 | 1.18072 | 1.0287 | 1.2061
0.89377 | 1.25695 | 1.1282 | 1.2392
0.91169 | 1.45009 | 1.3533 1.2894
0.92762 | 1.73266 | 1.6602 | 1.3323
1.0561 0 ) 1.6792

Table 10 Stress intensity factors and the contact zone sizes for an isotropic
inhomogeneous medium under fixed grip remote bending, v = 0.3,

ko = Eoe11/a, 0,(,0) = —Eoei (z/a)exp(az), By = Eo /(1 — 1v?).

e >0 e <0 No contact
ki(a) b/a ki(—a) ki(a) ki(—a)
Eo&l\/; —Eoel\/; Eoel\/z E()E]\/E

0.0 |0.3333 | 0.5443 | 0.3333 0.5443 0.5 -0.5

0.1 |0.3405| 0.5964 | 0.3258 0.4965 0.5523 | —0.4523
0.25 1 0.3508 | 0.6832 | 0.3140 0.4320 0.6402 | —0.3886
0.5 10.3669 | 0.8554 | 0.2947 0.3419 0.8151 —0.3010
1.0 [0.3968 | 1.3359 | 0.2585 0.2130 1.3029 | —0.1794
1.5 | 0.4234 | 2.0827 | 0.2269 0.1320 2.0570 | —0.1064
2.0 | 0.4476 | 3.2488 | 0.2000 0.0815 3.2297 | —0.0631

aa b/a
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Table 11 Stress intensity factors and contact zone sizes for an isotropic inhomogeneous
medium under remote strain &, = €y + €1(z/a) = €:(8 + z/a), (Fig. 25), a=0.5,
v=03,e/e; =€ >0.

€ ki(a) | ki(-a)
A &1 b/a Eo&']\/a Eoé‘]\/a
0.0 0.3669 0.8554 0.0
0.25 0.7184 1.1798 0.0
0.4485 | 1 1.4561 0.0

0.45 1 1.4582 0.0010
0.50 1 1.5297 0.0345
0.625 |1 1.7083 0.1184
0.75 1 1.8869 0.2023
1.00 1 2.2442 0.3700
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Figure 2 Crack surface displacements v(z,0) in an inhomogeneous isotropic medium

under uniform pressure py applied to the crack surfaces. ( vy = 2apy(l — v?)/Ey,
v = 0.3, plane strain conditions.)
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Figure 2B Crack surface displacements v(z,0) in an inhomogeneous isotropic medium
under uniform pressure py applied to the crack surfaces. ( vy = 2apy(1 — )/ En,
v = 0.5, plane strain conditions.)
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